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The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity r] in a tube of 
radius R surrounded by a viscoelastic medium of elasticity G and viscosity qS occupying 
the annulus R < r < HR is determined using a linear stability analysis. The inertia of 
the fluid and the medium are neglected, and the mass and momentum conservation 
equations for the fluid and wall are linear. The only coupling between the mean flow 
and fluctuations enters via an additional term in the boundary condition for the 
tangential velocity at the interface, due to the discontinuity in the strain rate in the 
mean flow at the surface. This additional term is responsible for destabilizing the 
surface when the mean velocity increases beyond a transition value, and the physical 
mechanism driving the instability is the transfer of energy from the mean flow to the 
fluctuations due to the work done by the mean flow at the interface. 

The transition velocity 4 for the presence of surface instabilities depends on the 
wavenumber k and three dimensionless parameters: the ratio of the solid and fluid 
viscosities r] ,  = (yS/r ] ) ,  the capillary number A = (T/GR) and the ratio of radii H, 
where T is the surface tension of the interface. For r ] ,  = 0 and A = 0, the transition 
velocity 4 diverges in the limits k < 1 and k 9 1, and has a minimum for finite k .  The 
qualitative behaviour of the transition velocity is the same for A > 0 and r ] ,  = 0, 
though there is an increase in 4 in the limit k B 1. When the viscosity of the surface 
is non-zero (7, > 0), however, there is a qualitative change in the 4 us. k curves. For 
yr < 1, the transition velocity 4 is finite only when k is greater than a minimum value 
k,,,, while perturbations with wavenumber k < kmin are stable even for T+ 00. For 
qr > 1, 4 is finite only for kman < k < k,,,, while perturbations with wavenumber 
k < kmin or k > k,,, are stable in the limit r+ 00. As H decreases or r ] ,  increases, the 
difference k,,, - k,,, decreases. At a minimum value H = Hmln which is a function of 
r],, the difference k,,, - kmtn = 0, and for H < Hmin, perturbations of all wavenumbers 
are stable even in the limit r+ m. The calculations indicate that Hmrn shows a strong 
divergence proportional to exp (0.08327;) for 7, 9 1. 

1. Introduction 
The stability of fluid flow near a flexible surface is of interest in diverse applications 

such as marine and aerospace propulsion, biotechnology and polymer processing 
applications. The flow of a fluid through a tube with flexible walls is observed in 
biological systems in the transport of blood and other biological fluids, as well as in 
biotechnology applications which involve flows past polymer matrices and membranes. 
There has not been much systemmatic work done on the flow of fluid through flexible 
tubes such as blood vessels in biological systems. It is usually assumed that the flow 
characteristics are the same as those of the flow through a rigid tube, where there is a 
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laminar-to-turbulent transition at Reynolds numbers between 2100 and 4000 due to 
the fluid inertia. However, the experiments of Krindel & Silberberg (1979) (discussed 
a little later), suggest that the stability characteristics of this flow could be very different 
from those of the flow in a tube with rigid walls. In particular, an anomalous drag force 
is observed when the fluid velocity is increased beyond a critical value which depends 
on the fluid viscosity and the wall elasticity, in addition to the dimensions of the tube 
and wall. The nature of the instability observed is also different: in a flexible tube, there 
is a gradual increase in the drag force as the Reynolds number is increased, in contrast 
to the sharp (almost discontinuous) jump in the drag force in a rigid tube at the critical 
Reynolds number. 

Krindel & Silberberg propose a correlation for the critical velocity which is 
independent of the fluid density, suggesting that the instability is not driven by inertial 
forces. This is rather surprising, because the instability in the flow in a rigid tube is due 
to inertial effects, and fluid flows are usually stable in the absence of inertia. To test the 
possibility of a non-inertial destabilizing mechanism, a simple model of a Newtonian 
fluid flowing through a tube with a flexible wall is analysed in this paper. A linear 
stability analysis is used to examine a possible destabilizing mechanism, and to 
determine the parameter ranges where the instability might be expected. From a 
technological viewpoint, the presence of an instability has two effects : it increases the 
drag force and the power consumption, and it also enhances mixing and heat and mass 
transfer. In processes where it is advantageous to have lower drag forces, the wall and 
fluid properties could be adjusted so that the flow is stable and remains in the laminar 
regime. Alternatively, in situations where greater mixing and heat or mass transfer are 
desirable, the fluid and wall properties could be suitably chosen to make the flow 
unstable. Therefore, a detailed examination of the mechanism responsible for 
destabilizing the flow could be of use in biotechnology applications. In this 
introduction, previous studies in related areas are briefly summarized and a few 
representative papers are cited in each area, and then the objective of the present work 
is discussed. 

The study of high Reynolds number flow of a fluid past a compliant surface has been 
motivated by the desirability of drag reduction in marine and aerospace propulsion. 
Kramer (1957, 1960) first suggested, based on his experiments on flow past compliant 
coatings, that the flexibility of the surface could reduce the turbulent drag. The effect 
of a flexible boundary on hydrodynamic stability were first studied by Benjamin (1960, 
1963) and Landahl (1962). By a simple extension of the conventional stability theory 
of Tollmien (1929) and Schlichting (1933), Benjamin (1960) showed that a flexible non- 
dissipative wall tends to stabilize the Tollmien-Schlichting instability, which is the 
destabilizing mechanism in the flow past a rigid surface. In addition, Benjamin and 
Landahl pointed out that there is an additional mode of instability that could 
exist in an inviscid flow, which was termed the flow-induced surface instability. Since 
then, there has been much work on the flow past a Kramer-type surface (see, for 
example Carpenter & Garrad (1985, 1986), Carpenter & Gajjar (1990) and the review 
article by Carpenter (1990) and the references therein). Most of the subsequent studies 
have determined the stability by a numerical solution of the Orr-Sommerfeld equation 
for the fluid velocity, which requires sophisticated numerical techniques due to the 
stiffness of the governing equation, An asymptotic analysis was used by Carpenter & 
Gajjar (1990) to obtain the stability characteristics when the critical layer near the wall 
is well separated from the viscous sublayer, and Carpenter & Garrad (1986) used a 
potential flow calculation to derive approximate stability criteria. The consensus 
appears to be that a compliant wall does indeed lead to drag reduction owing to a 
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postponement in the transition from laminar to turbulent flow. A numerical study of 
the effect of flexible walls on the stability of plane Poiseuille flow was carried out by 
Green & Ellen (1972), using an extension of the techniques developed by Lin (1945a-c, 
1955). However, there does not appear to be much work on the flow through a tube 
bounded by a flexible wall. In part, this may be because the flow through a rigid tube 
is always stable within the linear theory, and the Tollmien-Schlichting instability does 
not exist for a rigid tube. 

The collapse of a flexible tube due to the difference between the internal and external 
pressures has also been extensively studied. Some fairly detailed experiments were 
conducted by Bertram (1986, 1987) where many types of oscillatory behaviour were 
observed at different values of the flow rate and difference between external and 
internal pressure, and these transitions have subsequently been characterized (see 
Bertram, Raymond & Pedley 1989). This problem has also been studied theoretically 
by Cancelli & Pedley (1985), Reyn (1987), Jensen & Pedley (1989) and others. In the 
theoretical studies, the cross-sectional area of the tube is related to the difference 
between the external and internal pressure, with an additional term to account for the 
effect of longitudinal tension. The flow in the tube is in the turbulent regime, and so 
the energy dissipation is neglected. The mass, momentum and energy balance 
equations are solved to determine the variation in the cross-sectional area and pressure 
as a function of the difference between the external and outlet pressure and the flow 
rate. Jensen & Pedley (1989) report reasonable agreement between theoretical 
predictions and experimental observations despite some simplifications made in the 
theoretical treatment. 

The studies discussed above consider the stability at high Reynolds number, where 
the fluid inertia plays an important role in destabilizing the flow. However, the inertial 
effects are absent in a low Reynolds number flow, and instabilities have to be driven 
by a different mechanism in this case. The low Reynolds number flow of a Newtonian 
fluid past a rigid surface is always stable because the Stokes equations are not explicitly 
dependent on time, but the flow of viscoelastic liquids could become unstable due to 
the time dependence of the elastic terms in the momentum equations. The stability of 
the flow of a viscoelastic fluid down an inclined plane was studied using a long- 
wavelength analysis by Gupta (1 967), and subsequently extended to finite wavelengths 
by Shaqfeh, Larson & Fredrickson (1989). These studies found that the critical 
Reynolds number for the onset of surface instabilities is lowered by viscoelastic effects, 
but the fluid inertia is still necessary to destabilize the flow. Yih (1970) used a long- 
wavelength analysis to show that the interface between two fluids of different viscosities 
can become unstable when the difference in strain rate increases beyond a critical value 
even at low Reynolds number. Hooper & Boyd (1983) found a similar instability for 
short waves. Waters & Keely (1987) used a long-wavelength analysis to examine the 
stability between two viscoelastic liquids, and found that there are unstable modes only 
when the viscosities of the two fluids are different. Renardy (1988) predicted, based on 
a finite-wavelength analysis, that there could be an instability even when the viscosities 
are equal. All the above studies require the inclusion of the inertial terms in the 
conservation equation to predict instabilities. 

The instability of the interface between two polymer melts during co-extrusion was 
studied by Chen (1 99 1) and Su & Khomami (1 992). Chen (1 99 1) showed, based on a 
long-wavelength analysis, that the flow could become unstable due to a discontinuity 
in the normal stress difference across the interface in the base state. Su & Khomami 
(1992) studied the flow of viscoelastic fluids through both plane and converging 
channels. They determined the behaviour in the long-wavelength limit using an 



262 V. Kumaran 

asymptotic analysis and extended the solution to finite wavelengths using analytic 
continuity. The above-mentioned instabilities due to the discontinuity in the normal 
stress difference could exist even in the absence of fluid inertia. The stability of the 
plane Couette flow of a Newtonian fluid adjacent to an elastic gel was studied by 
Kumaran, Fredrickson & Pincus (1994). Here, the authors found that unstable 
fluctuations are possible even when the inertia of the fluid and the gel are neglected. 
The flow is destabilized by the transport of energy from the mean flow to the 
fluctuations due to a discontinuity in the velocity gradient at the interface. 

Experimental work on the flow of a Newtonian fluid through a gel-walled tube was 
conducted by Krindel & Silberberg (1979). They observed that there is an anomalous 
increase in the drag force when the fluid velocity is increased beyond a critical value, 
which they attributed to wall oscillations caused by an instability in the flow. The 
transition Reynolds number in this system was found to be much lower than the 
transition Reynolds number Re = (2p R / q )  = 2100 for the flow through a rigid tube. 
Here, is the transition velocity, R is the radius of the tube, and p and 7 are the density 
and viscosity of the fluid. Krindel & Silberberg used two methods for characterizing the 
transition to a turbulent flow: visual observation by injecting a dye stream into the 
center of the tube and drag measurements. In some cases the transition Reynolds 
number was found to be as low as 570 using the visual observation technique, but the 
drag measurements indicated that the transition could take place at an even lower 
velocity. Further, there was found to be a gradual increase in the drag force, in contrast 
to the near discontinuous jump at the transition Reynolds number in a rigid tube, 
indicating that the destabilizing mechanism could be different in the present case. The 
authors obtained the correlation cc (GR2/qH) ,  where G is the shear modulus of the 
gel and H is the radius of the outer gel wall. The absence of the fluid density in this 
correlation suggests that fluid inertia may not be important in destabilizing the flow, 
and the dominant stresses are the viscous stress in the fluid and the elastic stress in the 
gel. This is very different from a rigid tube, where the inertial stresses destabilize the 
flow when the Reynolds number is increased beyond the transition value. 

In the present paper, a linear analysis is used to determine the stability of a viscous 
flow in a tube with viscoelastic walls, and to examine the mechanism that could cause 
unstable oscillations in the wall. The inertia of the fluid and the wall material are 
neglected in the calculation, and it is useful to examine the parameter ranges where this 
approximation is valid. The subsequent calculation shows that the inertia can be 
neglected when the dimensionless number (RelI') = (pGR2/q2) < 1. The shear 
modulus of elasticity G varies in the range of 10-100Nm-2, the lower value being 
typically encountered in soft biological tissues while the higher limit is applicable to 
dense polymer gels. The viscosity of fluids and biological suspensions is typically in the 
range 10-2-10-3 N s m-2, while the density of most liquids is about 10' kg m-3. For 
these parameter values, the fluid inertia can be neglected for R 4 (10-100 pm). The 
surface tension at the interface between the solid and the fluid will be comparable to 
the elastic stress for capillary number A E (T /GR)  = 0(1), where T is the surface 
tension. The surface tension for a polymer gel is 0(10-2 N m-l), and the stress due to 
surface tension will be of the same magnitude as the elastic stress for tubes of thickness 
100 pm. Tubes of this size are present in the microcirculation system, but there does not 
appear to be any experimental work that has probed this regime. Krindel & Silberberg 
(1979) considered a tube of diameter 150 pm, but the coefficient of elasticity of the gel 
used by them was 100 N m-2 and so the parameter (RelI') was about 150. However, 
as mentioned earlier, the experimental correlation derived by them indicated that there 
is a balance between the viscous stresses in the fluid and the elastic stresses in the wall 
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at the transition velocity where the flow becomes unstable. This analysis attempts to 
examine a possible non-inertial mechanism that could drive the instability. 

A normal mode analysis is used for determining the stability of the perturbations in 
this paper. Here, perturbations in the form of Fourier modes are imposed on the base 
flow, and their temporal growth rate is determined. This method has been used for the 
classical problems in hydrodynamic stability such as the Rayleigh-Taylor, Kelvin- 
Helmholtz and Taylor-Couette problems. In the study of the stability of inviscid 
shear flows, the initial value method is also used, where a disturbance in the form of 
a localized wave packet in space is imposed on the mean flow, and the spatial growth 
rate of the perturbations is determined. The relationship between the two techniques 
is given in Chapter 6 of Dra in  & Reid (1981). When the perturbations are neutrally 
stable, the spatial and temporal modes coincide because both the spatial and temporal 
growth rates are imaginary. Near the neutral stability curve, the group velocity of the 
most unstable mode in the temporal description is related to the derivative of the 
frequency with respect to the wavenumber in the spatial description. Therefore, the 
normal mode analysis provides direct access to the neutral stability curve, which is our 
primary interest in the present study, and also to the group velocity of the weakly 
unstable spatial modes. The normal mode problem is simpler than the initial value 
problem, and it is possible to obtain analytical results for the growth rate in the former 
case, whereas the latter involves extensive computation. Consequently, the normal 
mode analysis is preferred in the present study. 

The equations of motion are solved analytically, and the growth rate is determined 
as a function of the wavenumber, fluid velocity and the wall and fluid properties. This 
is more advantageous than the easier numerical approach, which involves asymptotic 
solutions in the long-wavelength limit and extension of the solutions to finite 
wavelengths, because it turns out that there are certain solutions which cannot be 
determined from the long-wavelength analysis; this will be discussed further in the 
conclusions. A detailed understanding of the asymptotic solutions in this limit could 
be used as a starting point to probe the stability of finite Reynolds number flows, where 
it is necessary to solve the equations numerically. A continuation procedure starting 
from the viscous limit may be more reliable than a continuation from the small- 
wavenumber limit in the present case due to the existence of solutions that are unstable 
at finite wavenumber but stable in the limit of small wavenumber. The instability will 
be modified by inertial effects at finite Reynolds number, but the destabilizing 
mechanism is likely to persist even at finite Reynolds number, whereas the inertial 
instability becomes operative only at a Reynolds number between 2300 and 4000. 

The configuration consists of the flow of a Newtonian fluid in a tube of radius R 
surrounded by a flexible material at rest in the annular region R < r < HR. The 
motion of the fluid is governed by the Stokes equations, and the inertia of the fluid and 
the wall are neglected. The dynamics of the wall is governed by a constitutive equation 
for an incompressible elastic solid (Landau & Lifshitz 1989) modified to include 
viscous dissipation. This equation has been used previously for polymer gels (see, for 
example, Harden, Pleiner & Pincus (1991) and Kumaran 1993). The radius of the tube 
is assumed to be invariant along the axial direction. This approximation is applicable 
to an incompressible flexible medium in a tube of infinite length. In tubes of finite 
length, there is a variation in the radius due to the pressure gradient along the tube, and 
the lengthscale for this variation is the total length of the tube. For example, if the 
variation in the tube radius is O(AR) over the length of the tube L, the slope of the walls 
is O(AR/L),  and the constant-radius approximation is valid for (ARIL) 4 1. In the 
experiments of Krindel & Silberberg (1979) the radius and length of the tube were 
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0.075 mm and 4 cm respectively. The variation in the radius of the tube was found to 
be about 20% of the tube radius, and for this variation the slope of the tube wall is 
about 7.5 x lop4. In the present analysis fluctuations with wavelength comparable to 
the tube radius are considered, and the results will be accurate if the variation over a 
distance comparable to the tube radius is small. The validity of this approximation is 
supported by the experimental observations of Krindel & Silberberg, who find that the 
variation is not large enough to explain the anomalous increase in the drag force. 

In the unperturbed state, there is a balance between the viscous stresses in the fluid 
and the elastic stresses in the wall. There is no coupling between the mean flow and the 
fluctuations in the momentum equation, since the fluid inertia has been neglected. But 
there is an additional term in the boundary condition for the tangential velocity due 
to the discontinuity in the strain rate at the surface. This is the only coupling between 
the mean flow and the perturbations, and is responsible for inducing the instability 
discussed in this paper. This term, which is proportional to the viscous shear stress in 
the fluid at the interface, has been incorporated in earlier studies (since Benjamin 1960) 
of the flow past a flexible surface at high Reynolds number. However, in those studies, 
this only modifies the existing instabilities because the viscous effects are small at high 
Reynolds number. In the present case, however, the viscous effects are dominant and 
the presence of this term completely changes the nature of the flow. 

The effects of surface tension and the ratio of the viscosities of the solid and fluid on 
the critical velocity are examined, and empirical relations are developed for the critical 
velocity in different limits. The equations of motion are derived in the next section, and 
the results of the stability analysis are discussed in #3 .  A brief summary of the 
important conclusions is given in $4. 

2. Problem formulation 
The system consists of a Newtonian fluid of viscosity 7 flowing in an infinitely long 

tube of radius R, which is surrounded by an incompressible flexible medium having a 
elastic shear modulus G and a viscosity vs that occupies an annulus of radius R < r < 
HR, as shown in figure 1 .  The outer wall of the viscoelastic material is fixed to a rigid 
tube at r = H. The base flow in the tube is a pressure-driven Hagen-Poiseuille flow: 

where d,po is the pressure gradient along the tube. The flexible medium is at rest in the 
base state, but there is a strain due to the fluid stress at the surface. The momentum 
conservation equation for the unidirectional displacement field at steady state can be 
easilv solved to obtain 

Note that the zero displacement boundary conditions at r = H R  are satisfied by the 
above displacement field. In addition, the viscous shear stress due to the strain rate in 
the fluid is exactly balanced by the elastic stress due to the strain in the surface. As 
mentioned in the introduction, we consider the limit of low Reynolds number, where 
the inertia of the fluid and the wall material are neglected. 

The conservation equations for the fluid are the incompressible Stokes equations : 

aivi  = 0, (2.3) 
-aip+va;ui = 0, (2.4) 
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Flexible wall 
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FIGURE 1. Configuration and definition of coordinate systems. 

where ui is the fluid velocity, p is the pressure and a, = @/ax,).  The stress in the fluid 
is 

7 6 j  = -Pa, + T@i uj + a, 0th (2.5) 

The boundary conditions in the fluid at the centre of the tube (r  = 0) are the symmetry 
conditions u, = 0 and a, uz = 0, while the boundary conditions at the interface between 
the fluid and the flexible medium are the continuity of velocity and stress, which are be 
discussed a little later. 

The wall of the tube is considered to be incompressible and impermeable to the fluid, 
and the conservation equations are similar to those used earlier for polymer gels 
(Harden et al. 1991 ; Kumaran 1993). The dynamics of the medium is described by a 
displacement field ui, which represents the displacement of the material points in the 
medium from their steady state positions due to the fluctuations in the stresses at the 
interface. The velocity field in the medium is vi = a,ui,  the time derivative of the 
displacement field. In an incompressible viscoelastic solid, the displacement field 
satisfies (Landau & Lifshitz 1989) 

while the momentum conservation condition is 

aiu, = o (2.6) 

- aip + Ga; u, + qs a; U, = 0. (2.7) 

Here,p is the pressure, qs is the viscosity of the wall, G is the shear modulus of elasticity 
and the bulk modulus is considered to be infinite since the medium is incompressible. 
The second term on the left side of the above equation is the divergence of an elastic 
stress due to the strain in the medium, while the third term on the left is the divergence 
of a viscous stress due to the strain rate. The expression for the stress tensor that has 
been used in deriving the above equation is 

where a, = @/at) .  Note that ai, is used for the stress in the wall, and 7ij for the stress 
in the fluid. Since the flexible medium is fixed to a rigid surface at r = HR, the boundary 
condition at this surface is ui = 0. In addition, the continuity of velocity and stress 
conditions at the interface r = R are 

V i  = a, ui, rij = gi,-ain a,, Tai u,, (2.9) 

where T is the surface tension, n is the normal direction (there is no summation over 
n), u, is the normal displacement and a, is the gradient along the tangential direction 
to the surface. In the present case, we consider surface displacements that are a 
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function of the axial coordinate only, and a, = a,. The product Sin S,, ensures that the 
surface tension term contributes only to the stress normal to the surface, and not to any 
of the other normal or shear stresses. 

It is convenient to scale the lengths in the problem by the radius of the tube R, and 
the times by (T,J/G), the ratio of the viscosity of the fluid and the elasticity of the 
medium. The appropriate scale for the velocity and pressure then become (GR/v )  and 
G respectively. With this non-dimensionalization, the mean fluid velocity (2.1) becomes 

v = r ( i  -PI, (2.10) 

where T = ( Vv/GR) is a dimensionless velocity. This is similar to the Weissenberg 
number for viscoelastic materials (Chen 1991; Su & Khomami 1992), with the 
difference that r is expressed in terms of the viscosity of the fluid and the elasticity of 
the medium, while the Weissenberg number contains the ratio of the viscosity and 
elasticity of the same viscoelastic fluid. From this point onwards, all the dynamical 
variables will be expressed in dimensionless form. 

In the stability analysis, the dynamical variables in the base state are perturbed by 
small axisymmetric disturbances of the form 

(2.1 1) 

where k is the wavenumber and s is the growth rate of the perturbations. Note that k 
is real and s is, in general, a complex growth rate since the temporal stability of the 
fluctuations is considered. The conservation equations for the fluid velocity 
disturbance, derived from (2.3) and (2.4), are 

ui = Ei(r) exp (ikx + st ) ,  ui = tii(r) exp (ikx + st),  

(d, + r-l) B, + ikv", = 0, (2.12) 

- d,p" + (d,2 + r-ld, - F2 - k2) v", = 0, (2.13) 

- ikp" + (d: + r-ld, - k2) f i x  = 0, (2.14) 

where d, is the total derivative (d/d,), since the eigenfunctions v",, 8, andp" are functions 
of r only. Note that there is no coupling between the mean and fluctuating velocity in 
the conservation equations because the Stokes equations are linear. However, there is 
a coupling due to the boundary conditions, which will be considered shortly. The 
scaled equations for the perturbations to the displacement field in the wall, from (2.6) 
and (2.7), are 

(d, + r-l)  ti, + ikCX = 0, (2.15) 

-d,p"+ (d,2 + r-ld, - r-2 -k2) (1 + 17, S) ti, = 0, (2.16) 

-ikp"+(d,2+r-'d,-k2)(1 +T,J,s)~?, = 0, (2.17) 

where 7,. = (v,/v) is the ratio of the viscosity of the wall and the fluid. 
The boundary conditions for the velocity field at the interface r = 1 are 

f i r  = stir, v", - 2rt?, = sti,. (2.18) 

The second term on the left side of the boundary condition for B, represents the 
variation in the velocity at the interface due to the gradient in the mean velocity in the 
fluid, and the factor - 2 r  in this term is (a, D) the gradient in the mean velocity at 
the interface (see (2.10)). This is the only coupling between the mean velocity and the 
fluctuations, and is responsible for the instabilities that are discussed later on. Finally, 
we have the matching conditions for the shear and normal stresses at the surface: 

?,, = 3,, + Ak2t?,, ?xr = Sxr, (2.19) 
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where A = (T/GR) is a capillary number that gives the ratio of the surface tension and 
the elastic stresses. There is no contribution due to the mean flow in the boundary 
condition for the shear stress, because the derivative of the shear stress is continuous 
across the interface in the mean flow from (2.1) and (2.2). The stresses in the wall and 

(2.20) 
fluid are 

(2.21) 

?,, = -p + 2d, f i r ,  ?,, = d, fi, + ikfi,, 

c?,, = - p  + 2( 1 + 7, s) d, u",, Czr = (1 + 7, s) (d, 11, + ik11,). 

The conservation equations (2.12H2.17) and the boundary conditions (2.18) and 
(2.19), along with the symmetry conditions (fir = 0 and d,fi, = 0) at r = 0 and the zero 
displacement conditions (11, = 0 and 11= = 0) at r = H can now be solved for the 
displacement fields and the growth rate. 

The conservation equations for the fluid, (2.12H2.14), can easily be solved to obtain 
the following eigenfunctions for ii, and fi, (Happel & Brenner 1965): 

5, = A ,  rZo(kr) + A,  Z,(kr), (2.22) 

ii, = (iAJk) [2Z0(kr) + krl,(kr)] + iA, Zo(kr), (2.23) 

jJ = 2A,Z0(kr), (2.24) 

where Zo(kr) and Zl(kr) are modified Bessel functions, and A,  and A,  are constants to 
be determined from the boundary conditions at the interface. The mass and 
momentum equations in the wall, (2.15)-(2.17), can be solved in a similar manner: 

u", = B, rKo(kr) + B, K,(kr) + B, rlo(kr) + B, Il(kr), (2.25) 

11, = (iB,/k) [2K0(kr) - krKl(kr)] - iB, Ko(kr) 

+ (iB,/k) [2Z0(kr) + krZ,(kr)] + iB, Io(kr), (2.26) 

jJ = 2(1+ s) [B, Ko(kr) + B3 1O(kr)l, (2.27) 

where Ko(kr) and Kl(kr) are also modified Bessel functions, and B,, B,, B3 and B, are 
constants to be determined from the boundary conditions. Two of these are fixed by 
the zero displacement conditions (fir = 0 and ii, = 0) at r = H ,  while the other two are 
determined from the conditions at the interface. 

The solutions for the velocity and pressure fields, (2.22)-(2.27), can be inserted into 
the velocity and stress conditions at the interface, (2.18) and (2.19), and the zero 
displacement condition iii = 0 at r = H, to obtain the characteristic matrix of the form: 

M . C T  = 0, (2.28) 

where A is the matrix of the amplitudes: 

(2.29) 

and M is a 6 x 6 matrix of coefficients, in which the six rows are obtained from the two 
velocity conditions at the interface (2.18), the two stress conditions at the interface 
(2.19) and the two zero displacement conditions at r = H.  The characteristic equation 
is obtained by setting the determinant of the characteristic matrix M equal to zero. The 
solution of the characteristic equation gives the growth rate s as a function of the 
wavenumber k for different values of H ,  r and 7,. The effect of changes in the 
parameter values on the growth rate of the fluctuations is analysed in the next section. 
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Though the present analysis is a temporal stability analysis, it is possible to obtain 
some information about the spatial stability of perturbations in the initial value 
analysis. The spatial and temporal modes are identical for neutrally stable 
perturbations, because both the spatial and temporal growth rates are imaginary in this 
case. Therefore, the stability bouiidaries for the initial value problem are identical to 
those calculated here. In addition, the group velocity of the most unstable waves in the 
spatial stability analysis can also be determined from a knowledge of the temporal 
growth rate from the relation (Drazin & Reid 1981) 

cg = - as,/ak, (2.30) 

where sI is the imaginary part of the growth rate (frequency) and k is the wavenumber. 
Some results for the group velocity are also presented in the next section. 

3. Results 
The characteristic equation turns out to be a quadratic equation which has two 

roots. The characteristic equation was determined analytically, and the two roots of the 
equation were obtained using symbolic computation. However, the algebra required 
for determining the equation is tedious and the roots are complicated, so we do not give 
the details of the calculation here. In this section, we report the scaling behaviour of 
the critical velocity, wavenumber and frequency of the most unstable mode in different 
limits; these are summarized in tables 1-3. Owing to the complexity of the algebra 
involved, it was not possible to obtain the asymptotic results analytically, and the 
limiting behaviour was obtained by fitting scaling relations for the critical velocity, 
wavenumber and frequency. The accuracy of the scaling relations are compared with 
the analytically determined values in figures 1&13, which are available on request from 
the authors or from the editorial offices of the journal. The empirical relations could 
prove convenient for comparing the theory with experimental results. 

The two solutions for the complex growth rate s are functions of four dimensionless 
parameters: the mean velocity r, the ratio of the viscosities of the wall and the fluid 
qr = (q8/q) ,  the ratio of radii Hand the capillary number A .  Here, the behaviour of the 
growth rate is analysed for a range of parameter values of H, qr and A ,  and the results 
are organized as follows. In 63.1, the case qr = 0, A = 0 and H varying is considered, 
and some qualitative features of the unstable mode are discussed. Then the effect of 
variation in the capillary number A at q7 = 0 and the effect of variation in qr at A = 0 
are examined in B3.2 and 3.3 respectively. 

3.1. Case I: qr = 0, A = 0 
In this subsection, we consider a system in which the viscosity of the wall is zero, and 
there is no surface tension. This is the most unstable situation, because an increase in 
surface tension stabilizes the interface and an increase in viscosity stabilizes the 
fluctuations due to increased viscous dissipation. Therefore, this system is analysed in 
some detail. 

In the absence of flow (r = 0), the roots of the characteristic equation are always real 
and negative, indicating that the system is stable. As the fluid velocity is increased, 
however, one of the roots becomes positive beyond a transition value r > 4. This is 
illustrated in figure 2(a), where the real parts of the two solutions for the growth rate, 
sR1 and sR2, are shown as a function of k. One of the roots, sR2, is always negative, while 
the other root, sR1, becomes positive for r > r,, where 4 is a function of the 
wavenumber. The magnitude of the unstable root sRl decreases to zero in the limit 
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Limit 4 k, - S I C  

H-l "} 4.109 A = O  lSlS(H- 1)-' 1.827 

0.7685 

0.335~IO.~ 

0.6789 

1.125A-0.4 

0.4104 

0.369 

TABLE 1. The power law dependence of 4, k, and -src on A for 7, = 0 

(qr-l) Q 1 H,,,~, = 2.1 is(7,- 110.25 
V r 9 1  Hmln = exp(l.O1l +O.O8327,P) 

TABLE 2. The empirical relations for H,,, for A = 0 in the limits (vr- 1) .g 0 and 7, % 0 

Limit r, k, - S I C  

4.109 

3.752(1 -7J1.'0 

0.7685 

- 1.515 1.8270 
H- 1 

1.9 1( - log (1 - v,))".~ 
H- 1 

1.227( 1 - V , ) - O . ~  

0.6789 0.4104 

exp (-0.01 188 + 0.083337;) 0.408314 0.4082 

TABLE 3. The empirical relations for 4, k, and -sr, for A = 0 and (1 -yr) < 1 and 7, .g 1 

k+O, while the magnitude of the stable root sR2 diverges proportional to kP2. In the 
limit k %- 1, both sR1 and sR2 converge towards a value of - 1. The imaginary parts of 
the two roots, sI1 and sr2 = -sIl., are shown in figure 2(b). From this, it can be seen that 
the unstable root has a negative imaginary part, indicating that the waves which 
become unstable travel downstream, while the upstream travelling waves are always 
stable. Further calculations indicate that the unstable mode is a downstream travelling 
wave for all values of 7,. and A, while the upstream travelling wave is always stable. 

The transition velocity, 4, shown in figure 3, increases a k-' in the limit k 4 1 , and 
increases a k2 in the limit k %- 1 for all values of H. The minimum value of the 
transition velocity, which is the velocity at which an instability is first observed, occurs 
at finite wavenumber. For k % 1 , the value of approaches a limiting behaviour which 
is independent of H because the behaviour of short-wavelength fluctuations is 
insensitive to the thickness of the wall. For k 6 1, it is observed that the transition 
velocity increases as the thickness of the wall H decreases. 

The critical velocity for the flow is the minimum velocity at which unstable 
perturbations can exist, and is the minimum of the &, k curves. Figure 4(a)  shows that 
r, decreases from 4.109 in the limit (H- 1) 4 1 to 0.7685 in the limit H 4 1. This 
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FIGURE 2.  (a) The real part of the growth rate sR, and (b) the imaginary part s, as a function of k for 
7, = 0, A = 0 and H = 2.  The solid line represents the first root s1 and the broken line represents the 
second root s2: -0-, r = 0; -A-, r = 5 ;  -0-, r = 10. 

indicates that in the absence of surface tension and viscosity of the flexible medium, an 
instability could be induced for all values of H at sufficiently high velocity. It might 
seem surprising that 4 remains finite for (H- 1) e 1, but it should be noted that we 
are only considering fluctuations whose amplitude is small compared to the thickness 
of the surface even in the limit (H- 1) 6 1. The wavenumber k,, frequency s, and the 
group velocity cg of the most unstable mode are shown in figures 4(b)-(d) respectively. 
It is interesting to note that the group velocity is negative for H < 2, becomes zero at 
H = 2 and then increases and assumes a constant value for H % 1. This implies that the 
most unstable mode in the spatial stability problem would move upstream for small H 
and downstream for large H. The power law behaviour of 4, the wavenumber of the 
most unstable mode k,, and the frequency of the most unstable mode sIC in the limits 
(H-1) 4 1 and H % 1 are given in table 1. 
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3.2. Case 2: qr = 0, A P 0 
An increase in the surface tension does not change the qualitative behaviour of the 
transition velocity, but it stabilizes the short-wavelength fluctuations. This is illustrated 
in figure 5, where the transition velocity is shown as a function of k for H = 2 and 
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FIGURE 5. The transition velocity, 4, as a function of the wavenumber k for H = 2, 7, = 0 and for 
different values of the capillary number A :  -0-, A = 0; -A-, A = 1.0; -0-, A = 10; -0-, 
A = 100. 

different values of A. As might be expected, there is no change in the transition velocity 
in the limit k -4 I because the stress due to the surface tension is proportional to k2 in 
this limit. However, the surface tension has a significant effect in the limit k >> 1, and 
c increases cc k3.6 in this limit (in contrast to the increase cc k2 for A = 0). 

The critical velocity, c, is shown as a function of (H- 1) for different values of A 
in figure 4(a). This has a finite value for H 9 1, but the presence of surface tension 
changes the qualitative behaviour in the limit (H- 1) Q 1, where we find that & 
increases cc (H- l)-0.'5 (in contrast to the finite value of 4 in this limit in the absence 
of surface tension). There is also a change in the power law behaviour of kc, and -sic 
(figures 4b, c) which are given in table 1. 

The empirical relations given in table 1 for the regime A % 1 and (H- 1) Q 1 turn out 
to be quite accurate for A > 0.1, though there is a little discrepancy for 0.01 < A < 0.1. 
The empirical relations for A & 1 and H B 1 are accurate only for A > lo4. A 
comparison between the theoretical curves and the empirical relations is given in 
figures lO(a-c) and 11 (a-c) which are available from the author or from the editorial 
office of the Journal. 

3.3. Case 3 :  A = 0, 7,. =I= 0 
A variation in the ratio of viscosities, q,., changes the qualitative behaviour of the 
transition velocity r,. The transition velocity is shown as a function of k for different 
values of H for 7,. = 0.3 in figure 6(4 ,  for 7,. = 1.0 in figure 6(b) and for qr = 3.0 in 
figure 6(c) .  From these figures, it can be seen that the transition velocity decreases as 
the wavenumber k is increased, reaches a minimum and then increases again as k is 
further increased. In addition, an increase in 7, tends to increase the critical velocity 
owing to the increased viscous dissipation in the wall. 

Further, figures 6(u-c) reveal a rather complex dependence of the transition velocity 
on H and k which is very different from the case vr = 0. In particular, the following 
features can be observed : 

(i) From figures 6(a, b), it can be seen that the transition velocity c decreases as k 
is decreased from a, and then it increases and diverges at a minimum value k = kmln. 
This is a common feature of the transition velocity curve for 7,. < 1, and k,,, can be 



Viscous flow of a fluid through a flexible tube 

103 

3 -  
2 -  

Id 

rt 3 :  
2 -  

10' 

3 -  

2 -  

273 

k 

7 

I I .  , , I  , 1 , 1 1  

2 3 4 6 10-1 2 3 4 6 100 1 0 0 1  ' ' 
10-2 

k 
FIGURE 6. The transition velocity 4 as a function of the wavenumber k for A = 0 and (a) 7, = 0.3; 
(b) 7, = 1 ;  and (c) 7, = 3. -0-, H = 1.3; -A-, H = 2.0; -0-, H = 3.0; -0-, H = 5.0; 
-V-, H =  7.0; -X-, H =  11.0; -+-, H = 101.0. 



274 V .  Kumaran 

(H-l)-' 

1 .o 

0.8 

0.6 

k 
I 0.4 I 

I 

0.2 

0 

0.8 1 
0.6 1 B 

t I I I I I I 1 I 
0 0.1 0.2 0.3 0.4 

(H-l)-' 

FIGURE 7. (a) The minimum wavenumber k,,, for the existence of unstable modes as a function of 
( H -  l ) - I  for A = 0 and for different values of 7,: -0-, 7, = 0.1 ; -A-, 7, = 0.3; -0-, 9, = 0.5; 
-0-, 7, = 1. (b) As (a) but for the minimum wavenumber k,,, (broken line) and the maximum 
wave number k,,, (solid line): -o-, 7, = 2.0; -A-, vr = 3.0; -0-, 7, = 5.0. 

obtained analytically by solving the characteristic equation for r = 00. The minimum 
wavenumber is shown as a function of ( H -  l)-l for different values of 7, in figure 7 (a). 
This figure shows that kmin increases cc ( H -  l)-l for ( H -  1) 4 1, while kmtn decreases 
cc H-2.5 for H + 1. 

(ii) Figure 6(c)  shows that for qr = 3.0, the transition velocity 4 diverges both at a 
maximum wavenumber k,,, and a minimum wavenumber kmln, and decreases to a 
minimum value at an intermediate value of k. Figure 7(b) shows k,,, and kmln as a 
function of ( H -  1)-l for different values of q7. In the limit H %- 1, an increase in 7,. tends 
to decrease k,,, but does not cause much variation in kmin. As H is decreased, the 
difference k,,, - kmtn decreases, until k,,, = kmtn at a minimum value H = Hmln. The 
equality of kmtn and k,,, has the following physical significance : for H < Hmln, there 
are no unstable modes even in the limit T-t 00, while for H = Hmln fluctuations with 
wavenumber k = kmtn = k,,, become unstable in the limit r+ 00. Thus, H = Hmrn 
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7, = 0.95; -V-, 7, = 1.0; -+-, 7, = 2.0; -X-, 7, = 3.0. 

serves as a stability boundary in the H ,  7r, k parameter space for 7, > 1, and 
fluctuations are always stable for H < Hmtn for a given value of q,.. 

(iii) The minimum height (Hmtn- 1) is shown as a function of (rr- 1) in figure 8. 
(Hmin - 1) increases proportional to (vr - l)0.25 in the limit (rr - 1) < 1 (table 2), which 
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is shown by the dotted line in figure 8. In the limit qr + 1, we find an exponential 
increase of the form Hmrn = exp (1.01 1 + 0.083273 (table 2). This relation is shown by 
the broken line in figure 8, and it is fairly accurate for a variation of five orders of 
magnitude in Hmin. 

Having ascertained the unstable regions in the k, H,  vr, A parameter space, the 
stability limits for 7,. > 0 can be determined. Figure 9(a) shows as a function of 
( H -  1) for different values of qr. For qr < 1, decreases from one constant value in 
the limit ( H -  1) 4 1 to another constant value for H + 1, while for vr > 1 we find that 
4 diverges proportional to ( H -  H m J 2  in the limit H +  Hmcn. The reason that vr = 1.0 
is a critical value regardless of the value of His due to the change in behaviour occurring 
at large k, for which the disturbance does not ‘see’ the thickness of the solid. The group 
velocity cg (figure 9 4  has very different characteristics in the parameter regimes l;lr < 1 
and rl. > 1. For qr < 1, the group velocity is qualitatively similar to the case qr = 0, 
though its magnitude increases as 7,. increases. For qr > 1, the group velocity diverges 
at H = Hmrn,  and the neutrally stable modes always travel downstream. The empirical 
correlations for the wavenumber of the most unstable mode k, (figure 9b), and the 
frequency -s,, (figure 9c) are given in table 3. A comparison between the theoretical 
values and the empirical relations is given in figure 12(a-c) for the limit ( H -  1) < 1 and 
in Figure 13 (a-c) for the limit H % 1. These figures are available from the author or 
the editorial offices of the journal. 

4. Conclusions 
In this paper, the stability of the flow of a Newtonian fluid through a tube of radius 

R surrounded by a flexible wall in the annular region of radius R < r < HR was 
studied at low Reynolds number. The incompressible Stokes equations were used for 
the fluid, while the wall was modelled as an incompressible viscoelastic solid in which 
the stress has an elastic part proportional to the strain, and a viscous component 
proportional to the strain rate. The inertial terms were neglected in the conservation 
equations for both the fluid and the surface. The mean flow in the fluid is a parabolic 
Hagen-Poiseuille flow, while the wall is at rest in the base state. Small perturbations 
in the form of Fourier modes periodic in the axial direction were placed on the fluid 
velocity field and the strain field in the solid, and the stability of the flow to these 
fluctuations was determined using a linear stability analysis. 

The conservation equations were solved analytically, and the characteristic equation 
for the growth rate was determined using the continuity of velocity and stress 
conditions at the interface. There are four dimensionless parameters that determine the 
stability of the system: the ratio of radii H ,  the dimensionless velocity r = (V7/GR),  
the dimensionless capillary number A = ( T / G R )  and the ratio of the surface and fluid 
viscosities 7,. = (qS/7). Since the characteristic equation was obtained analytically, it 
was possible to obtain a fairly comprehensive picture of the stability behaviour over 
many magnitudes of variation in A ,  H and 7,. 

The mechanism leading to an instability in the present case is very different from that 
for the flow through a rigid tube. In a rigid tube, the fluid inertia is necessary for 
producing unstable perturbations since the conservation equations are not explicitly 
time dependent in the absence of inertia. However, in the present case there are 
unstable modes in the absence of inertia, and the time dependence enters through the 
elastic terms in the momentum conservation equation for the wall. The destabilizing 
mechanism is also different from that in the concentric flow of nowNewtonian fluids 
(Chen 1991; Su & Khomami 1992), where the instability is due to a normal stress 
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difference across the surface in the base state. In the present situation, there is a 
discontinuity in the strain rate at the surface because the viscous stress in the fluid is 
balanced by the elastic stress in the solid. This discontinuity results in an additional 
term in the boundary condition for the tangential velocity, proportional to the product 
of the mean fluid strain rate and the normal displacement of the surface, which gives 
the variation in the mean velocity due to the surface displacement. This is the only 
coupling between the mean flow and the fluctuations, and is responsible for 
destabilizing the fluctuations when the fluid velocity exceeds a critical value. 

The physical reason for this instability can be better understood from the energy 
balance equation for the fluctuating component of the velocity. The energy balance 
equation can be written as (Chandrasekhar 1981): 

d , E =  C + S - D .  (4.1) 

Here, E is the total energy of the system, D is the rate of viscous dissipation of energy 
due to the shear in the fluid and the wall, C is the rate of transport of energy from the 
mean flow to the fluctuations due to the convective terms (Reynolds stress terms) in the 
momentum equation and S is the deformation work due to the shear at the boundaries 
of the fluid and the wall. The deformation work is given by 

S = dA,r,,vj, J A 
(4.2) 

where dA, is an area element directed along the outward normal to the surface. The 
dissipation of energy in (4.1) has a stabilizing effect on the flow, while the other two 
terms could have a stabilizing or destabilizing effect. In a rigid tube, the deformation 
work S is zero because the fluid velocity is zero at the wall, and the instability is caused 
by the transport of energy due to the Reynolds stresses C. In the present case, however, 
the convective terms have been neglected and it is the deformation work S that has a 
destabilizing effect. A closer examination of this term reveals that the work done at the 
outer surface of the flexible surface is zero, because the velocity is zero at this surface. 
At the interface between the fluid and the flexible surface, the work done on the fluid 
is given by 

S - dArr,U,f, (4.3) f -JA 

JA 
where vXf is the velocity fluctuation in the fluid. The deformation work done on the wall 
is 

S, = - dAa,,v,,. (4.4) 

There is a negative sign in the above expression because the outward normal is directed 
in the - r-direction. In situations where the shear stress and the tangential velocity are 
continuous across the interface, Sf = - S,, indicating that there is a transfer of energy 
between the fluctuations in the fluid and wall, but no net transport of energy from the 
mean flow. In the present case, however, the shear stress is continuous across the 
interface from (2.19), but there is a discontinuity in the tangential velocity (2.18) which 
is proportional to v,.-v,, = 2rur. As was pointed out earlier, this additional term in 
the tangential velocity boundary condition is the only coupling between the mean flow 
and the fluctuations. Owing to this, the sum (Sf + S,) is non-zero, indicating that there 
is a net transport of energy from the mean flow to the fluctuations. This is facilitated 



278 V. Kumaran 

by the flexibility of the wall, and is responsible for destabilizing the flow when the fluid 
velocity increases beyond a transition value. 

The destabilizing effect of the surface elasticity can be better illustrated for the 
simplified case of the plane interface between an infinite fluid and an infinite flexible 
medium, where A = 0 (no surface tension) and 7, = 0 (viscosity of the surface is zero). 
Here, it is sufficient to consider just the tangential velocity and the shear stress boundary 
conditions. In the absence of fluid flow (r = 0), the growth rate of the fluctuations is 
given by s = (ZJfi,) from the boundary condition for the velocity (2.18). The shear 
stress balance (2.19) indicates that the strain rate arcz in the fluid and the strain d,zi, 
in the flexible medium are of the same sign. Since the velocity in the fluid decays for 
z +  co and the strain in the flexible medium decays for z + -  co, the stress balance 
condition implies that 6, and ii, are of opposite signs, and the real part of s is negative. 
When there is a fluid flow, however, the growth rate is given by s = (a, - 2rfir)/G2. The 
real part of the additional term (- 2Tfi,/tl,) turns out to be positive for downstream 
travelling waves, and the real part of s becomes positive when r is increased beyond 
a critical value. Therefore, the presence of the coupling between the mean flow and 
fluctuations in the tangential velocity boundary condition is responsible for 
destabilizing the system when the velocity is increased beyond a critical value. 

The characteristic equation for the growth rate is a quadratic equation, and there are 
two travelling wave solutions, one propagating downstream and the other upstream. 
In all the parameter regimes studied here, it is found that the downstream travelling 
wave becomes unstable, while the upstream travelling wave is stabilized as the fluid 
velocity is increased. In the absence of surface tension ( A  = 0) and viscosity of the 
surface (7, = 0), the transition velocity at a given value of H increases proportional to 
k2 in the limit k $= 1, and proportional to kP2 in the limit k 4 1. The mode with the 
lowest transition velocity has a finite wavenumber, and the transition velocity and 
wavenumber tend to increase as the thickness of the wall (H-1) is decreased. The 
critical velocity, 4, which is the minimum value of r,, is finite in the limits ( H -  1)  4 1 
and H B 1. The group velocity of the most unstable mode in the spatial stability 
analysis, which can be determined from the present analysis using (2.30), shows an 
unusual behaviour. For ( H -  1) -g 1, we find that the group velocity is negative and it 
decreases cc ( H -  l)-’, indicating that the most unstable waves travel upstream. As H 
is increased, the group velocity increases and crosses zero at a finite value of H and then 
reaches a constant value for H 9 1, implying that the most unstable waves travel 
downstream for large H .  

An increase in the surface tension tends to change the behaviour of short-wavelength 
modes, but the behaviour of long-wavelength modes remains unchanged, because the 
interfacial tension decreases proportional to k2 in this limit. In the limit k 9 0 the 
transition velocity increases proportional to k3.6 (instead of the k2 increase in the 
absence of surface tension). Other than this, the qualitative features of the 4 us. k 
curves remain unchanged. 

There is a qualitative change in the 4 us. k curves when the ratio of viscosities ?lr is non- 
zero. For 7, < 1, only perturbations with wavenumber greater than a minimum value 
k > kmin become unstable when the fluid velocity is increased beyond a transition value 
4, while perturbations with wavenumber k < kmin remain stable even in the limit 
r+- co. For vr > 1, only perturbations with an intermediate wavenumber kmin < 
k < k,,, become unstable when the velocity is increased beyond a transition value 4, 
while perturbations with wavenumber k < kmin or k > k,,, remain stable even for 
r+ 00. As His  decreased, kmin increases and k,,, decreases so that there is a decrease 
in the range of wavenumbers that are potentially unstable. At a minimum value of 
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H = Hmtn we find that kmt, = k,,, and for H < H,,, all wavenumbers are stable even 
for r+ 00. The minimum value Hmin for the presence of unstable modes was calculated 
over a range of values of qr, and it was found that Hmdn increases as qr is increased, and 
shows a strong divergence K exp (0.08327;) for large qr. Empirical relations were 
developed for Hmtn, the critical velocity, and the wavenumber in the limit (1 -qr) 6 1 
and qr 9 1 (tables 2 and 3). 

From the above discussion, it can be seen that the stability characteristics of the 
system are rather complex for 7,. > 0. An interesting feature is that for qr < 1, waves 
with wavenumber greater than a minimum value become unstable, while perturbations 
with wavenumber less than the minimum value are always stable. The behaviour 
for qr > 1 is more unusual: it is found that perturbations with wavenumber in between 
a minimum and maximum value become unstable, while perturbations with 
wavenumber outside this range remain stable at all velocities. The range of potentially 
unstable wavenumbers decreases as the ratio of radii H i s  decreased, until at H = Hmin 
the minimum and maximum wavenumbers coincide and all wavenumbers are stable. 
This complex behaviour would not have been obtained from simpler models, which 
approximate the wall dynamics by a spring term proportional to the normal 
displacement and a damping term proportional to the normal velocity (Carpenter & 
Garrad 1985, 1986), and it appears to be necessary to include a realistic description of 
the wall dynamics in order to accurately capture the stability characteristics. Further, 
this type of behaviour could not have been determined using the simpler continuation 
technique which involves a long-wavelength asymptotic analysis in the limit k + 0 and 
analytic continuation for finite wavenumbers, because for vr > 0, the perturbations are 
unstable only for k > kmi, and are stable in the limit k+O. This limitation has been 
overcome in the present case by obtaining an analytical solution for the velocity and 
strain fields and the growth rate. 

The above analysis indicates that an instability could exist even in the absence of 
fluid inertia, and the mechanism suggested here is the transport of energy from the 
mean flow to the fluctuations due to deformation work done by the mean flow at the 
surface. As anticipated by Krindel & Silberberg (1979), we find that wall oscillations 
could be induced when the fluid velocity increases beyond a critical value. In their 
experimental analysis, Krindel & Silberberg considered the regime H 4 1 (typically 
10 < H < 30), and the correlation obtained for the critical velocity was & K H-' in this 
limit. A direct comparison of the correlation with the results of this analysis is not 
possible because they do not report the value of the viscosity of the gel qs. However, 
the present results do not appear to be in agreement with this correlation because we 
find that the critical velocity decreases to a finite value for H 9 1. This disagreement 
could be due to the modification of the present instability due to inertial effects when 
the Reynolds number is not small. In addition, it must be noted that Krindel & 
Silberberg considered only two values of the ratio of radii H in their experiments, and 
more experiments may be necessary to determine the exact dependence of the critical 
velocity on H .  Further experiments with softer elastic materials and move viscous fluids 
would be able to probe the non-inertial limit. For example, if elastic materials with 
shear modulus in the range of lONm-' and more viscous fluids with viscosity 
0.1 N s m-' are used, then inertial effects could be neglected if the tube radius is less 
than 1 mm in diameter, and it may be possible to observe the instability on a 
macroscopic scale. 
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